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This paper presents a method for decomposing bulk stress data info individual stress components.
This has applications in the field of thermoclastic stress analysis where the raw data are related only to
the sum of the principal stresses (referred to as bulk stress). By considering equilibrium, and with some
knowledge of the form of the selution and boundary conditions, it is shown that bulk stress data for a two
dimensional body may be separated inlo stress components by mean of a least squares method.
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1. INTRODUCTION

Whilst the thermoelastic effect has been known for well over a century, it is only
within recent years that this phenomenon has been exploited as a means of ex-
perimental stress analysis. Equipped with an infrared sensor, together with some
precision scanning mechanisms and clever signal processing hardware, a system
known as SPATE (Stress Pattern Analysis by measurement of Thermal Emis-
sion), can form a raster picture of the temperature fluctuation of body under
cyclic loads.- Since such thermal data are directly related to the changes in bulk
stress (07 + 04, + 0..), this system offers a powerful means of obtaining full-
field non-contact measurements of stresses within structural components. As a
result, the use of SPATE iias become increasingly widespread, and many success-
ful applications may be found in the literature (e.g., [1]-[3]). However, because
temperature and bulk stress are scalar values, the vectorial nature of stress is lost
from data obtained by such techniques. Whilst the bulk stress information may
be useful for many qualitative inspection purposes, quantitative evaluations are
pussible only for cases where it is known that the stress fiekd is dominant in one
direction. Taking an extreme case as an example, it may be shown that SPATE
would not be able to distinguish an unloaded body and one which is subjected to
pure shear. T'he failure of SPATE fo respond to pure shear was clearly shown in
the experiment of Stanley and Chan [4].

Because the knowledge of individual stress components is important in many
practical situations, much work has been done in the fields of holographic interfer-
ometry to separate principal stress components from isopachic and isochromatic
fringe data (e.g. [5-7]). In thermoelastic stress analysix however. only the isopachic
data may be obtained which, by themselves, do not provide enough information
for determining the stress components. On the other hand, it ix not true that
the selection of stress values which satisfy a given set of isopachic data can be
totally arbitrary. This is because the permissible stresses mnst satisfy equitibrium
as well as known boundary conditions, It i <hown in thix paper that, at least
for two-dimensional problems, the imposition of these conditions can he used to

determine the stress components associated with a given set of isopachic data.

P R NS




RO e e L L A

e ey

2. THEORY

For a two-dimensional isotropic material under elastic deformation in the absence
of any body force, it is well known that the solution for stresses may be expressed

in terms of a potential &, such that

v

o' oe 8’

Oz = (‘)y’ N G,, = E;E-, Ory = '—M.

where 0., 0, and o, are the normal and shear stress components, and & must

(2.1)

satisfy the bi-harmenic equation
bl ) e ' 0 9.9
927 T 25y T oyt =" (2.2)

For a simply connected body, the specification of two conditions of ® around
the boundary forms a well posed problem, and it may be shown that the necessary
boundary conditions for ¢ may be determined from two known components of
siress at each point along the boundary. In such a case, the stress field may be
uniquely determined, and there is thus no need for additional data. However,
accurate boundary conditions may be unknown in many real situations, and the
analyst s forced to resort to simplifications which may or may not be realistic.
The assumption of a uniformly distributed stress profile across the houndary of a
component under consideration is one such example. With the availability of other
stress related information, such as experimentally obtained bulk stress data, the
requirement for a complete set of the boundary conditions mvay be relaxed. The
problem now becomes one which involves finding a solution to eqn (2.2) subject
to certain known boundary conditions (e.g.. making use of free houndaries) and
its nearness to the bulk stress data.

As an illustration, consider a rectangnlar seginent of a specimen honuded by
0<r < and =05 <y <05 Let the sides ¢y = £0.5 be free edges and the
remaining two boundaries he loaded by normal stresses which may be functions of
y. Without loss of generality, considering only the symmetrical (about the r-axis)
case, the analytical solution for & may be found in Timoshenko and Goodier [8].

viz.,

) .
&= a,'{T +ac” T (—qtan s cos 29y + 29y sin 24y) . (2.3)
in which a, and @ are real coelficients, and 4 satislies the cquation

sin29 + 29 = 0. (2.4)
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The non-trivial roots of eqn (2.4) are complex, and appear in conjugate pairs.
Also, if v is a root, so is —. For simplicity, let us further assume that the stresses
are known to be uniformly distributed as 2 — oo so that only values of v which
have positive real parts need be considered. For the stresses to be real, the general

.

expression for ¢ may be written as

2
3 .
® =a, --J2 + E ape 37 (—qp tan g cos 29y + 2y ysin 274 )

k=1
= : (2.5)
+ Z Tre™ T (=T, lan T, €os 2T,y + 27,y sin 29, ),
k=1
where @ and ¥, are the conjugates of a; and 4, respectively.
The expressions for the stress components may be obtained by direct differ-

entiation of eqn (2.5) and it may be shown that the bulk stress S is given by

s

it

Orr + Oy,

(2.6)

x ~
9 JE T . e =97 y—
o B R TN cos2uy + 8D Tk T con 2T,y
k=1 k=1

In general, the coeflicients agp would be dependent on the distribution of o,
and o,, at r = 0. However, suppose that this stress distribution is not known
a priori, but experimental data on bulk stresses, sueh as those obtained from
SPATE, are available. The problem of determining individual stress components
for this example then essentially involves the determination of the coellicients a;
(and also the number of ap's 1o sufliciently represent the solution) in eqn (2.5)
subject 10 some best-fit eriterion such that the difference hetween S and the areay

of experimentally observed bulk stresses ST is intnitised.
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3. TEST CASES

To test the viability of the proposed scheme, the stress field was first solved directly
for the case where a known distribution of stresses at the boundary z = 0 is applied.
The bulk stresses at discrete points on a Ny x N, grid were then generated and,
with white noise of various degree added, served as a simulated SPATE output.
This set of data was then used in the inverse problem where the coefficients a;
were estimated and the resulting stress components compared to those obtained

in the direct problem.

3.1 Solving for 4

ti order to solve either the direct or inverse problem, the solution to eqn (2.4)
wmust firstly be sought. Because of its non-algebraic nature, a numerical algorithmn
using a Newton-Raphson scheine was used. The asymptotic form

llilu -k = (3—:[ + l'fr) + il—"i‘l———-—k.f ) (3.1)

—

was used to generate initial estimates for the iterative solution procedure. This and
all subsequent computations were done on an ELXSE 6100 and double precision

programming was used throughout.

3.2 The Direct Problem

The first step in the direct problem was to decide on a stress distribution at the

boundary r = 0. Serving as a relatively severe test case, a step function of the

form
=100 —1/3<y<1/3
(3.2)
oy =10 elsewhere
was chosen, where the normal stresses o, at £ = 0 may be expressed as
N
0ze =00+ Y ar{(47% tan 1, + 897) cos 29y — 8y sin 27z y)
(3.3)

k=1
N

+ Y @{(43% tan 7, + 85}) cos 25,y — 874 ysin 27,9},
k=t

where N is sufficiently large to represent the function expressed by eqns (3.2).
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The coefficients a; were then solved by matching the first N Fourier com-
ponents of both sides of eqn (3.3). It was found that N = 15 was adequate to
represent the required step function.

A regular grid system of 241 x 121 points was used to cover the region 0 <
x < 2 and the bulk stress at each grid point was generated using the truncated
form of eqn (2.6). Random errors (up to £5 units) were then added to the data to
form a simulated SPATE output SE. Contours of the generated bulk stress and

the simulated SPATE output SE (over the region 0 < r < 1) are shown in Fig. 1.

3.3 The Inverse Problem

As mentioned earlier. the inverse probleny involves the estitation of the coeflicients
ap given a set of bulk stress data 8%, This at first appears straightforward aned
a least squares approach sectmed appropriate for handling the noise. However.,
problems can arise due to under-parameterisation (the under-estimation of the
mutuber of terms necessary 1o represent the solution) as well as poor conditioning
of the least squares matrix. These problems, and the suggested retedies, are
discussed in the following.

The bulk stress may be rewritten in the form

N
S(r.y)=ao + Z bak—1 (€724 cos 2y + €~ T cos 27, )
k=1

N (3.4)
+ iz boy (e_z"’ cos 29,y — ALl cos29,y) .
k=1
where by + tho = 8‘)3(“..
The least squares problem is to find b such that
3 [E(zy) - b ¥ (=, )]’
D
is minimised, and where
bT = [aovbhb2~ Ve |b2N] )
(3.5)

T = (4o, 41, P2, - .-, Van],

5
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in which

=2z -2y T

Yo i{z,y)=e cos 295y + e cos 2%, y

(3.6)

e-z‘nr -2V, 7

Yo, y) = i cos2y.y — e c0s 29,y) ,

and D represent the rectangular array of grid points.

l(t

‘The least squares problem gives rise to the so called *normal equations”™

Lb=r, (3.7)
in which

L;; = Z vilr y)vi(e ).
rT = ["o. ryorae. )'3‘\-]_ (3.8)
where

= ZSI:(J“!])("(I' .'/)

the diccrete least squares problem suffers from the loss of precision due to
the subtraction of two similarly valued nambers of finite word-length. If the sam-
pling rate is sufficiently high or grid spacing is sufliciently small. then all sums
way be replaced by integrals with an error proportional 1o the square of the grid
spacing. This leads 1o a procedure known as Continunous Least Squares where, by
performing the integrations, it may be shown that the elements of the symmetric

matrix L are given by

L(t,1) =1

sin 9 2t
L(1,2k) = Real 1~e 2yt
(126 e“{ e ’} (3.9)

LO,2k+1) = ~Im {S";z’* (- e‘”")} ,
k

and the remaining terms are more easily expressed in terms of the supplementary

function F{9m,vn) such that

L(2m,2n) = F(¥m, ) + F(4m:Fn) + F(Tns ) + F(31n, 70)
and
Lm+1,2n+ 1) = ~F(9m, W) + F(4m . ¥0) + F(n, 1) = F(Trms Tn)s
(3.10)
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where, for m # u,

Flrn. )= // 7ML 0gg 2y cos 2,y dedy
v

_ ‘, — ’—'.’(‘rm-i'"ul/)[ |
""'

. ! .
it + 30 b+ ————sin{3, — W)

‘l(‘lm + .In) “n i T T
(.11
Note that for i = n.
. () = =m0y [in 2y,
F(om. qm) = ( ,,‘ ) [ ”l. n + |]
hlm =dm (J'_))

¢ (since sin 24, + 2+, = 0).

The least squares matrix for the problem under consideration hecomes highly
ill-conditioned as the number of rows (or columnsj incereases beyond 7. The de-
terioration of the conditioning of L is illustrated in Table 1. Such behaviour
means that the inversion of L on a computer with finite word-lengths may not
give dependable results for the high frequency modes. This gives some idea of the
maximum number of paramecters which can be reliably estimated in the inverse
problem. However, because these paranieters can he strongly correlated, it may
be necessary to include higher frequency eigenfunctions in the least squares model
to avoid bias in estimating the low frequency components. To systematically de-
termine the order of the model, a consistent order estimation scheme was adopted

(see Ref. [9]) which involved the minimization of the following objective function:
Z =Nl + mnN, (3.13)

where N is the total number of data ~oints, m is the number of parameters assumed
in the model, and 0,2,, is the variance of the least squares fit. It may be shown that
as N — oo, m may be determined exactly.

As m increases beyond 7, the least squares matrix may deviate from being
strictly positive definite due to the poor conditioning. To overcome this, a standard
technique which involves the addition of a small number € to the diagonal elements
of L was adopted (see Ref. {10]). Because a Choleski decomposition was used in
the matrix solver, the value of ¢ should be of the order of the square-root of the
computer truncation errors. A value of ¢ = 10~% was selected to be appropriate

in the current example.

m;».‘- e



Number of 97s 1 2 3 4

Nummber of rows in L 3 5 7 9

Condition number! I I H 520 4070

t The condition namber here is defined as the quoticnt of 1he Luagest
. . i4
and smallest eigenvalue of the matrix.

Table 1. Conditioning of the least squares matrix.
ES |

4. RESULTS AND DISCUSSION

The minimization of the bjective function expressed by eqn (3.13) allows a sys-
tematic nteans of determining the number of parame.ors which should be included
in the model. The procedure adopted was to compute Z for increasing nuniher of
7's, and select the case which corresponds to a minimum Z. For the two noise lev-
els considered (£2.5 and £5 units), this procedure returned an estimate for m of
29 (or 14 7's). This is in close agreement with the 15 9's actually used to generate
the simulated SPATE data. However, even though such a high order system was
considered, most of the parameters were estimated with substantial errors. Table
2 shows the comparison of the estimated parameters and the actual values used
in the direct problem for the maximum-noisc case. It is seen that only the first 8
parameters were estimated reasonably, which is consistent with the conditioning
of the least squares matrix as discussed earlier (see Table 1). Despite this, these
parameters were able to be reproduce the bulk stress field with exceptional accu-
racy as seen in Fig. 2 which shows a comparison of the bulk stress field produced
in the direct problem prior to the addition of random noise, and that obtained in
the inverse problem.

The comparisons of the o,,, 0,, and o, fields are shown in Figs 3 to 6
respectively. Only the results for the &5 unit noise case are presented here as this
scheme was found to be relatively insensitive to the random noise present, and the
the results for the £2.5 unit noise case were essentially the same. Interestingly, it
is seen that the inaccurately predicted higher order parameters tend to affect the
quality of estimated individual stress components much more than that for the

bulk stress field. The reason for this may be easily seen from the algebraic form

e D e

of these stress fields. For example, setting r = 0 in eqn (2.6), and comparing this

- 8 fi
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with eqn (3.3), it can be scen thai the stress component o, has {erms which are

proportional to 4 and 73 whilst § contains only terms in 7 and 37. Therefore, as

k (and hence 95 and 5.} becomes larger, errors in a; would become more and more

visitble on stress components. Fortunately though, the higher ovder parameters

are associated with terms which decay rapidly in the e-direction. and ax shown

in these figiures, the spurious stresses are confined 1o only a small region on the

loaded edge. For the bulk of the region under consideration, the inverse schenme

was able to determine all three components of stresses accearately.

byl

b (Direct)

by (Inverse)

o R e R R

21
22
23
24
25
26
27
28
29
30
31

33.3
48.7

Y
i & o )

e J XN
oS 00w L, 00N

1
—
<

N
(=]
=

-3.01
-4.88
-1.96
-5.93
1.00
-1.55
242
3.84
1.83
4.74
-1.13
0.748
-1.30

33.3
48.5
-3.96
.7
-2.41
7.00
-LT
-12.1
-0.386
-9.62
2.77
0.904

Table 2. Comparison of the parameters used in generating S
and those obtained in the inverse problem,
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“1 5. CONCLUSION

8

| Whilst isopachic data such as thuse obtained in a thermoelastic stress analysis

. alone are not sufficient for individual stress components to be deduced. the corre-
sponding stress ficld cannot be chosen arbitrarily. This i.’s‘ because a valid stress

1 field must satisfy the conditions of equilibrium as well as the iimposed boundary
conditions. It has been demonstrated that by making use of these conditions, a

{ least squares scheme can be devised to identify the stress components in a two

3 dimensional body. For the case considered, the scheme was found to be relativeiy

E insensitive to random noise, although due to ill-conditioning of the least squares
matrix, the high frequency components of stresses were not able to be resolved.
However, these high frequency components of stresses dissipate extremely quickly
in accordance with St. Venant's principle, and the stress components in the greater
part of the region under consideration can be determined successlully.

} For the purpose of demonstrating such a combined experimental-analytical
stress analysis technique, the chosen example was a rather simple one. In practice,
for a component of arbitrary geometry, the problem becomes much more difficult
and resorting to the analytical solution may be impractical. In such a case, there
is scope for adopting this least squares approach in a finite elements formulation.
The viability of this combined experitnental-finite eletents technique is currently
under investigation.

}
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squares method.
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